Chapter 7: Linear Equations and Graphs

Review (6.5 Slope)

1. How can you find the slope?

$$
m=\frac{\text { rise }}{\text { run }} \quad O R=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

2. What is the slope of the following graph?

$$
m=\frac{\text { rise }}{\text { run }}=\frac{1.5}{2} \stackrel{\alpha}{2} \frac{3}{4}
$$

3. Determine the slope of the following:
a. $y=5 x-3$

$$
\text { Slope }=\ldots
$$

$$
\begin{aligned}
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{6-4.5}{0-(-2)} \\
& =\frac{1.5}{2} \text { cR } \frac{3}{4}
\end{aligned}
$$

b. $2 y=-6 x+3 \longrightarrow \frac{2 y}{2}=-\frac{6 x}{2}+\frac{3}{2} \rightarrow y=-3 x+\frac{3}{2}$

$$
\text { Slope }=3
$$

c. $y=0.5 x-2.5$

$$
\text { Slope }=0.5
$$

7.1 Slope-Intercept Form

Outcome: 3. Demonstrate an understanding of slope with relations to rise and run, and line segments and lines
6. Relate linear relations expressed in slope-intercept form to their graphs.
7. Determine the equation of a linear relation using a graph and a point and the slope to solve problems.

Definitions:

Y-Intercept: the y-coordinate of the point where a line or curve crosses the y-axis
You can find the value of y when $x=0$
Example: $y=2 x-12$ when $x=0, y=-12 ;(0,-12)$
Slope-Intercept Form: the equation of a line in the form $y=m x+b$

- $\mathbf{m}=$ the slope
- b is the y-intercept

Parameter: a variable that has a constant value in a particular equation
Example: $y=10 m+100$. Determine the value of the parameter b.
Solution: "the parameter, b, represents the y-intercept, which is equal to 100 "

Example 1:

What are the slope and y-intercepts of each equation?
a) $y=25 x+3$
d) $y=1 / 2 x-41 / 2$
$m=25$

b) $y=5 x$

$$
m=1 / 2
$$

$m=5$
y-intercept $=0$
c) $y=7$
f) $y=2 x-1$
$m=0$
y-intercept $=7$
$m=2$

Example 2:
a) What are the slope and y-intercept of the line shown in the graph?

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{3}{4}
\end{aligned}
$$

$$
y \text {-intercept }=3.5
$$

or $\frac{7}{2}$

b) What is the equation of the line in slope-intercept form, $y=m x+b$?

$$
y=\frac{3}{4} x+\frac{7}{2}
$$

c) Use graph technology to check your equation.

Example 3:
Parents of members of the cheerleading squad rent a hall. They arrange a talent show as a fundraiser. The relationship between the number of tickets sold, x, and the profit, y, in dollars, may be represented by the equation $12 x-y-840=0$.
a) What is the slope of the line? What does the slope represent?

$$
m=12 \text {; represents the cost per ticket }
$$

b) Identify the y-intercept. What does it represent?

$$
b=-840 \text {; represents how much the ballroom }
$$ costs.

c) How many tickets must the parents sell to reach the break-even point?

$$
\begin{gathered}
y=0 ; \\
12 x-0-840=0 \\
12 x-840=0 \\
+840 \\
\\
12 y=840 \\
\\
12
\end{gathered} \quad x=70 \text { tickets }
$$

tzero profit

Example 4:

Asha has selected a hotel for her wedding reception. The cost involves a fee for the deluxe ballroom and a buffet charge that depends on the number of guests. This is shown in the table.

Number of Guests	Cost (\$)
0	425
25	1800
50	3175
75	4550

a) Sketch a graph of the data in the table. Discrete \rightarrow can + have $1 / 2$ a persen

b) What are the slope and y-intercept of the line? What does each parameter represent?

$$
m=
$$

$$
\begin{aligned}
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & =\frac{1800-425}{25-0} \\
& =\frac{1375}{25}=55
\end{aligned}
$$

c) Write an equation that describes the relationship between the cost and the number of guests. Express the equation in slope-intercept form.

$$
c(n)=m n+b
$$

$$
c(n)=55 n+425
$$

d) What is the cost for 140 guests?
$n=140$
$C=55(140)+425$
$C=\$ 8125$
e) Asha would like the total cost to be no more than $\$ 15,000$. What is the maximum number of guests that can attend?
$C=15,000$

$$
\begin{aligned}
& 15,000=55 n+425 \\
& -425 \\
& -425 \\
& 14575=\frac{55 n}{5} \quad n=265 \text { guests }
\end{aligned}
$$

Example 5:

A decorator's fee can be modelled by the equation $F=75 t+b$. In the equation, F represents the fee, in dollars, t represents time, in hours, and b represents the cost of the initial consultation, in dollars.
a) Suppose the decorator spends 4 hours working for a client and charges the client $\$ 450$. Determine the value of the parameter b.

$$
t=4 \quad F=450 \quad\left\{\begin{aligned}
450 & =75(4)+b \\
450 & =300+b \\
-300 & =30 c \\
150 & =b
\end{aligned}\right.
$$

b) How many hours does the decorator work if a client is charged $\$ 975$?

$$
\begin{aligned}
& 975=75 t+150 \\
&-150 \\
&-150
\end{aligned}
$$

$$
\frac{825}{75}=75 t / 75
$$

$$
t=11 \text { hours }
$$

Key Ideas

- The slope-intercept form of a linear equation is $y=m x+b$, where m is the slope of the line and b represents the y-intercept

Example: $y=2 x+1$

Textbook Questions: pg. 349\#1-13, 15, 17

7.2 General Form

Outcome: 6. Relate linear relations expressed in general form to their graphs.

Definitions:

General Form: the equation of a line in the form $A x+B y+C=0$

- Where A, B, and C are real numbers
- A and B are not both zero.
- By convention, A is a whole number. This means that A will always be positive

$$
\begin{aligned}
& \text { A is a whole number. This means that A will always be positive } \\
& \text { Example: } 3 x+5 y-11=0 \quad \text { how do we know, this is still } \\
& \text { ar equatica? "hos exponent of }
\end{aligned}
$$

X-intercept: the x-coordinate of the point where a line or curve crosses the x-axis.

- The value of x when $y=0$

$$
\text { Example: } y=2 x-12, \quad \text { when } y=0, x=6 ;(6,0)
$$

Example 1:

Rewrite the equation in general form, $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$
a) $4(y)=\left(\frac{3}{4} x-2\right) 4$
c) ${ }^{40}(y)=\left(\frac{2}{5} x+\frac{1}{8}\right)^{40}$

$40 y=16 x+5$

by the least comma multiple in the denom C Hove everything to
b) $y=-x-5$
$+x+5+x+5$
$x+y+5=0$

Example 2:

Consider the linear equation $4 x+5 y-20=0$
a) What is the x-intercept of a graph of the equation? when $y=0$

$$
\begin{aligned}
4 x+5(0)-20 & =0 \\
+20 & +20
\end{aligned}
$$

$$
\frac{4 x}{4}=20 / 4 \quad x=5
$$

b) What is the y-intercept of the graph of the equation? when $x=0$

$$
\begin{aligned}
4(0)+5 y-20 & =0 \\
+20 & +20 \\
5 y & =20 / 5
\end{aligned} y=4
$$

c) Use the intercepts to graph the line.
d) What is the slope?

d) $y=\frac{4}{3} x+6$

Example 3:

Sketch each linear relation and identify the intercepts. What are the domain and range for each relation?
a) $x-3=0$
$x=3$
b) $x=0$

c) $y+2=0 \quad y=-2$

Example 4:

Brooke wants to save $\$ 336$ to decorate her bedroom. She has two part-time jobs. On weekends, she works as a snowboard instructor and earns $\$ 12$ per hour. On weeknights, she earns $\$ 16$ per hour working as a high school tutor.
a) Write an equation to represent the number of hours Brooke needs to work as a snowboard instructor, S , and as a tutor, T .

$$
12 S+16 T-336=0
$$

b) What is the S-intercept of a graph of the equation? What does the S-intercept represent?

$$
\begin{aligned}
& 125+16(0)-336=0 \\
& \frac{125}{12}=\frac{336}{12}
\end{aligned}
$$

$s=28 \mathrm{hrs} \rightarrow$ how much she has to work If she doesn't work any hours as a tutor.
c) What would the T-intercept be? What does it represent?

$$
\begin{aligned}
& 12(0)+16 T-336=0 \\
& +336 \\
& \frac{16 T}{16}=\frac{336}{16}
\end{aligned}
$$

$T=21$ hrs \rightarrow how much she has to work a sha
d) Suppose Brooke works 8 hrs as a snowboard instructor. How many hours will she need to work as a tutor?

$$
s=8
$$

$$
\begin{aligned}
& 12(8)+16 T-336=0 \\
& 96+16 T-336=0 \\
& 16 T+96-336=0 \\
& 16 T-240=0 \\
& +240+240 \\
& \frac{16 T}{}=240 / 16 \\
& 16
\end{aligned}
$$

Key Ideas

- The general form of a linear equation is $A x+B y+C=0$, where A, B, and C are real numbers, and A and B are not both zero. By convention, A is a whole number.
- To graph an equation in general form, determine the intercepts, the draw a line joining the intercepts; or convert to slope-intercept form.
- To determine the x-intercepts, substitute $y=0$ and solve. To determine the y-intercepts, substitute $x=0$ and solve.
- A sketch of a linear relation may have one, two or an infinite number of intercepts. A line that represents an axis has an infinite number of intercepts with that axis. A horizontal or vertical line that does not represent an axis has only one intercept.

$x=0 \rightarrow$ will be directly

Textbook Questions: Pg. 365 \# 1-8, 10, 13 -15
7.3 Slope-Point Form

Outcome: 6. Relate linear relations expressed in slope-point form to their graphs.
7. Determine the equation of a linear relation using a graph, a point and the slope, and two points to solve problems

Definitions:
Slope-Point Form: the equation of a non-vertical line in the form $y-y_{1}=m\left(x-x_{1}\right)$

- Where m is the slope, and $\left(x_{1}, y_{1}\right)$ are the coordinates of a point on the line

Example 1:
Write an equation in slope-point form, $y-y_{1}=m\left(x-x_{1}\right)$, of the line passing through the given points.

(1) $m=\frac{\text { rise }}{\text { run }}=\frac{-2}{1}=-2$
(2) Pick any point on the graph

$$
\begin{gathered}
y-1=-2(x-1) \\
\underline{c} 2 \\
y-3=-2(x-0) \\
y-3=-2(x)
\end{gathered}
$$

b) convert the equation to general form $A x+B y+C=0$, and slope-intercept form $y=m x+b$

General

$$
\begin{aligned}
& y-1=2(x-1) \\
& y-1=2 x-2 \\
& -y+1
\end{aligned}
$$$=2 x-y-1$

Slope-intercept

$$
y-1=\underbrace{2(x-1)}_{x}
$$

$$
\underset{+1}{y-1}=2 x-2
$$

$$
y=2 x-1
$$

Example 2: Writing an Equation of a Line Using Two Points Use slope-point form to write an equation of the line through $(-5,2)$ and $(-2,1)$. Then, write the equation in general form, $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Convert
(1)

$$
\begin{aligned}
& m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-2}{-2-(-5)} \\
&=-\frac{1}{3} \\
& y-2=-\frac{1}{3}(x-(-5))
\end{aligned}
$$

$$
y-2=-\frac{1}{3}(x+5)
$$

$$
\begin{aligned}
& y-2=-\frac{1}{3} x-\frac{5}{3}+ \\
& y+2-4
\end{aligned}
$$

$$
-y+2 y^{3}+2
$$

(2)

$$
0=-\frac{1}{3} x-y-\frac{5}{3}+2\left(\frac{3}{3}\right.
$$

$$
0=-\frac{1}{3} x-y-\frac{5}{3}+\frac{6}{3}
$$

$$
0^{-1}=\left(-\frac{1}{3} x-y+\frac{1}{3}\right)
$$

Example 3: Writing an Equation of a Line Using a Point and Slope

$$
0=\frac{1}{3} x+y-\frac{1}{3}
$$

a) Use slope-point form to write an equation of the line through $(3,-4)$ with slope 2 . Sketch a graph of the line.

$$
\begin{aligned}
& y-(-4)=2(x-3) \\
& y+4=2(x-3)
\end{aligned}
$$

b) Express the equation in slope-intercept form, $y=m x+b$. Sketch a graph of this line.

$$
\begin{gathered}
y+4=2(x-3) \\
y+4=2 x-6 \\
-4 \quad-4 \\
y=2 x-10
\end{gathered}
$$

c) Compare your graphs.

Example 4:
A family drives at a constant speed from Calgary, $A B$, to visit relatives in Edmonton, $A B$. When they start driving at 9:00 am, they are 300 km away from Edmonton. At 10:30 am they reach Red Deer located 154 km from Edmonton.
a) Write an equation that describes the distance, d, in kilometers, from Edmonton in terms of t hours past 9:00 am.

$$
d-d_{1}=m\left(t-t_{1}\right)
$$

$$
d-300=-\frac{292}{3}(t-0)
$$

$$
\begin{aligned}
& (0,300) \quad(1,5,154) \\
& m=\frac{\Delta d}{\Delta t}=\frac{154-300}{1,5-0}=-\frac{146}{1.5} \\
& \\
& =-\frac{292}{3}
\end{aligned}
$$

$$
d-300=\frac{-292}{3} t
$$

b) What time will the family reach Edmonton?

$$
d=0 \mathrm{~km}, t=?
$$

$$
-300=\frac{-292}{3} t
$$

$$
\frac{-300}{(-292 / 3)}=\frac{-292}{3} t /(-292 / 3)
$$

$3.08 \mathrm{hrs}=t$

Key Ideas

- The slope-point form of a non-vertical line in the form $y-y_{1}=m\left(x-x_{1}\right)$, where m is the slope, and $\left(x_{1}, y_{1}\right)$ are the coordinates of a point on the line.
- An equation written in slope-point form can be converted to either slope-intercept form or general form
- Any point on a line can be used when determining the equation of a line in slope-point form.

Textbook Questions: Pg. 377\#1-3, 5-8, 10-14

7.4 Parallel and Perpendicular Lines

Outcome: 3. Demonstrate an understanding of slope with relations to parallel lines and perpendicular lines.
7. Determine the equation of a linear relation using a point and the equation of a parallel or perpendicular line to solve problems.

Definitions:

Parallel Lines: lines in the same plane that do not intersect

- Lines that have the same slope, but different intercepts

$$
m_{2}=\frac{\text { rise }}{\text { run }}=\frac{1}{2}
$$

Perpendicular Lines: two lines that intersect each other at right angles (90 degrees)

- Lines that have slopes that are negative reciprocals of each other.

$$
m_{2}=\frac{\operatorname{rise}}{r u n}=\frac{-2}{1}=-2
$$

- don t have to have the same

Example 1:
State the slopes of lines that are parallel and lines that are perpendicular to each linear equation.
a) $y=3 x+5$
b) $2 x-5 y-10=0$
parallel

$$
y=3 x+7
$$

Parallel

$$
\frac{2}{5} x+2=y
$$

$$
\rightarrow \frac{2 x}{5}-\frac{10}{5}=\frac{5 y}{5}
$$

Perpendicular

$$
y=-\frac{1}{3} x+5
$$

Example 2:

$$
-\frac{5}{2} x-2=y
$$

Determine whether the lines in each pair are parallel, or perpendicular, or neither.
a) $y=\frac{1}{2} x-7$

$$
y=2 x-7
$$

nether
b)

$$
\begin{aligned}
& y=3 x-4 \\
& y=3 x+\frac{1}{4}
\end{aligned}
$$

parallel
c) $y=\frac{2}{5} x-6$

$$
5 x+2 y=8
$$

perpendicular

Example 3:
Write an equation in slope-intercept form of a line that is parallel to $3 x+y+3=0$ and passes through ($5,-6$). Use technology to verify that the lines are parallel.

$$
\begin{gathered}
y-y_{1}=-3\left(x-x_{1}\right) \\
y-(-6)=-3(x-5) \\
y+6=-3 x+15 \\
-6 \quad-6 \\
y=-3 x+9
\end{gathered}
$$

Example 4:
A line is perpendicular to $4 x+y-12=0$ and passes through (8,-6). Write the equation of the line in both slope-intercept form and general form.

$$
y=-4 x+12
$$

$$
y=\frac{1}{4} x-8
$$

$$
0=\frac{1}{4} x-y-8
$$

Key Ideas

- Parallel lines have the same slope and different intercepts. Vertical lines are parallel to each other, as are horizontal lines, if they have different intercepts.
- Perpendicular lines have slopes that are negative reciprocals of each other. A vertical line with an undefined slope and a horizontal line with a slope of zero are also perpendicular.
- The properties of parallel and perpendicular lines can give information about the slopes. Knowing the slopes can help you develop an equation.
- A line perpendicular to $y=5 x+7$ has the same y-intercept. The line $y=5 x+7$ has a slope of 5 and a y-intercept of 7 . The perpendicular line has a slope of $-1 / 5$ and a y-intercept of 7 . So, the equation of the perpendicular line is

$$
y=-\frac{1}{5} x+7
$$

Textbook Questions: Pg 390 \# 1-8, 10-13, 15

