Math 10C



# **Chapter 4: Exponents and Radicals** 4.1 Square Roots and Cube Roots

### **Review**

1. Evaluate the following.

a.  $\sqrt{81} = \sqrt{92} = 9$ 

b. 
$$\sqrt{36} = \sqrt{6^2} = 6$$

the number

multiplying

2

3

5

4

9

25

36

64

4 16

7 49

Outcome: Demonstrate an understanding of factors of whole numbers by determining the:

- Prime factors
- Greatest common factor
- Least common multiple
- Square root
- Cube root

### **Definitions:**

Perfect Square: A number that can be expressed as the product of two equal (factors)

## Example:

Example:

- $16 = (4)(4) \text{ or } 4^2$
- 25 = (5)(5) or 5<sup>2</sup>
- 36 = (6)(6) or 6<sup>2</sup>

Square Root: one of two equal factors of a number

Example:  
S  
• 
$$\sqrt{49} = \sqrt{(7)(7)} = 7$$
  
Perfect Cube: A number that is the product of three equal factors  
Example:  
Can'f take the  
Square root of a the  
negative number.  
Example:

• 
$$64 = (4)(4)(4) = 4^3$$

•  $\sqrt{49} = \sqrt{(7)(7)} = 7$ 

• 
$$27 = (3)(3)(3) = 3^{\frac{1}{2}}$$

Cube Root: one of three equal factors of a number

Example:  
• 
$$\sqrt[3]{512} = \sqrt[3]{(8)(8)(8)} = 8$$
  
•  $\sqrt[3]{125} = \sqrt[3]{(5)(5)(5)} = 5$   
HATH  $\rightarrow 4: \sqrt[3]{(} \Rightarrow Enter$ 

Prime Factorization: the process of writing a number written as a product of its prime factors. Tree Method: Example: The prime factorization of 24 is  $2 \times 2 \times 2 \times 3$ .  $24 \div 2 = 12 \div 2 = 6 \div 2 = 3$ 

# Relationship between Square Roots and Perfect Squares (Cube roots and Perfect Cubes)

The number \_\_\_\_\_\_ is a perfect square. It is formed by multiplying the same number, \_\_\_\_\_\_, twice together.

$$(4)(4) = 4^{2} = 16$$

The square root of <u>16</u> is <u>4</u>.  $\sqrt{16} = \sqrt{(4)(4)} = \sqrt{4^2} = 4$ 

This is the same for perfect cubes and cube roots, however, the only difference is you the perfect cube is formed by multiplying the same number three times together.

### Example 1: Identifying Perfect Squares and Perfect Cubes

State whether each of the following numbers is a perfect square or a perfect cube, both, or neither.



Example 2: Evaluate the following.





J

### Example 4:

The volume of a cubic box is 27 000 in<sup>3</sup>. Use two methods to determine it's dimensions.



# **Key Ideas**

• A perfect square is the product of two equal factors. One of these factors is called the square root.

• 25 is a perfect square:  $\sqrt{25} = 5$  because  $5^2 = 25$ 

• A perfect cube is the product of three equal factors. One of these factors is called the cube root.

-216 is a perfect cube:  $\sqrt[3]{-216} = -6$  because  $(-6)^3 = -125$ 

- Some numbers will be BOTH a perfect square AND a perfect cube.
  - 15 625 is a perfect square : 125<sup>2</sup> = 15 625
  - o 15 625 is a perfect cube: 25<sup>3</sup> = 15 625
- You can use diagrams or manipulatives, factor trees, or a calculator to solve problems involving square roots and cube roots.

Textbook Questions: Pg.158-159 #1-4, 6, 9, 10

# **4.2 Integral Exponents**

#### **Review:**

- 1. Identify the base and the exponent, then evaluate the power.
- base 2. Simplify and evaluate the following. (hint: you'll need to use exponent laws)

a. 
$$4^{2} \times 4^{3} = 4^{3} \times 4^{5} = 4^{2+5} = 4^{4}$$
  
b.  $(5^{2})(5^{3}) = (5)^{2+3} = 5^{5}$   
c.  $(3^{2})^{7} = 3^{2} \times 7 = 3^{14}$   
d.  $\frac{6^{8}}{6^{5}} = 6^{8-5} = 6^{3}$ 

Outcome: Demonstrate an understanding of powers with integral exponents.

#### What is an integral exponent?

Integer number: is a whole number that can be either positive, negative, or zero.

|          |   |   |   |   |     |   |    | •  |   | -  |   |   |   |   |         |   |
|----------|---|---|---|---|-----|---|----|----|---|----|---|---|---|---|---------|---|
| Example: | ( | - | 3 | 7 | -2, | - | ١, | 0, | 1 | i. | 2 | , | 3 | , | <br>er. | 2 |

Exponent: determines how many times to multiply a number. Usually to the right and above the base. × a

Example:

Combine the two...

Integral Exponent: the exponent of a number is either a positive or negative whole number.

Examples: (5<sup>-2</sup>), 2<sup>-3</sup>

 $e \times ponent$  = (3)(3) = 9

## !\*!\*!\*REMEMBER THE EXPONENT LAWS\*!\*!\*!

| Exponent Law                                                                      | Example                                                                                        |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Note that a and b are rational or variable bases                                  | and <i>m</i> and <i>n</i> are the integral exponents.                                          |  |  |  |  |
| Product of Powers<br>$(a^m)(a^n) = a^{m+n}$                                       | $(3^{-2})(3^4) = 3^{-2+4} = 3^2$                                                               |  |  |  |  |
| Quotient of Powers<br>$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$                       | $\frac{x^3}{x^{-5}} = \left(x^{3-(-5)}\right) = x^8$                                           |  |  |  |  |
| Power of a Power<br>$(a^m)^n = a^{mn}$                                            | $(0.75^4)^{-2} = 0.75^{(4)(-2)} = 0.75^{-8} \text{ or } \frac{1}{0.75^8}$                      |  |  |  |  |
| Power of a Product<br>$(ab)^m = (a^m)(b^m)$                                       | $(4z)^{-3} = \frac{1}{(4z)^3} or \frac{1}{64z^3}$                                              |  |  |  |  |
| Power of a Quotient<br>$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$ | $\left(\frac{t}{3}\right)^{-2} = \left(\frac{3}{t}\right)^2 = \frac{3^2}{t^2} = \frac{9}{t^2}$ |  |  |  |  |
| Zero Exponent<br>$a^0 = 1, a \neq 0$                                              | $(4y^2)^0 = 1$ $-(4y^2)^0 = -1$                                                                |  |  |  |  |
| Power of a Negative Exponent $a^{-n} = \frac{1}{a^n}$ , $a \neq 0$                | $4^{-3} = \frac{1}{4^3}$                                                                       |  |  |  |  |
| Quotient of Negative Power<br>$\frac{1}{a^{-n}} = a^n, a \neq 0$                  | $\frac{1}{3^{-2}} = 3^2$                                                                       |  |  |  |  |

### Example 1:

Write each product or quotient as a power with a single exponent.

a) (7<sup>6</sup>)(7<sup>-2</sup>)

Use the exponent laws for multiplying or dividing powers with the same base. Method 1: Add the exponents



Method 2: Use Positive Exponents

$$76 \cdot (\frac{1}{72}) = \frac{76}{72} = 76^{-2} = 740$$

+ E

b) 
$$\frac{7^{-5}}{7^3}$$

#### Method 1: Subtract the Exponents

| 7- | 5- | 3 | 11 | 7 | - | 8 |
|----|----|---|----|---|---|---|
|----|----|---|----|---|---|---|

#### Method 2: Use Positive Exponents



### Method 2: Use Positive Exponents







c)  $\frac{(3y)^3}{(3y)^{-2}}$ 

#### Method 1: Subtract the Exponents



Method 1: Subtract the Exponents  $(-3.5)^{4-(-3)}$ 

 $=(-3.5)^{4+3}\neq(-3.5)^{7}$ 

### Example 3:

Manitoba Agriculture, Food and Rural Initiatives staff conducted a grasshopper count. In one 25 km<sup>2</sup> area, there were 401 000 000 grasshoppers. Use the following table to assess the degree of grasshopper infestation in this area.



$$2^{-5} = \frac{1}{2^5} \qquad \left(\frac{3}{4}\right)^{-2} = \frac{1}{\left(\frac{3}{4}\right)^2} = \left(\frac{4}{3}\right)^2$$

• You can use the exponent laws to simplify.

| Exponer                                                                                                              | nt Laws                                                          |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| Note that <i>a</i> and <i>b</i> are rational or variable bases and <i>m</i> and <i>n</i> are the integral exponents. |                                                                  |  |  |  |  |  |
| Product of Powers                                                                                                    | Power of a Product                                               |  |  |  |  |  |
| $(a^m)(a^n) = a^{m+n}$                                                                                               | $(ab)^m = (a^m)(b^m)$                                            |  |  |  |  |  |
| Quotient of Powers                                                                                                   | Power of a Quotient                                              |  |  |  |  |  |
| $\frac{a^m}{a^n} = a^{m-n}, a \neq 0$                                                                                | $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$       |  |  |  |  |  |
| Power of a Power                                                                                                     | Zero Exponent                                                    |  |  |  |  |  |
| $(a^m)^n = a^{mn}$                                                                                                   | $a^0 = 1, a \neq 0$                                              |  |  |  |  |  |
| Power of a Negative Exponent $a^{-n} = \frac{1}{a^n}, a \neq 0$                                                      | Quotient of Negative Power<br>$\frac{1}{a^{-n}} = a^n, a \neq 0$ |  |  |  |  |  |

Textbook Questions: Pg.169-170 #1, 2, 3-6, 8, 10.

## **4.3 Rational Exponents**

b)

**Review:** Evaluate the following:

a) 
$$4^3 = (4)(4)(4) = 6^{-1}$$

$$4^{-3} = \frac{1}{(4)^3} = (4)(4)(4) = 64$$

Outcome: Demonstrate an understanding of powers with rational exponents.

#### Definition

Rational Exponents: the power of a number is in the form of a fraction.

Example:  $4^{\frac{1}{3}}$  ,  $x^{\frac{4}{3}}$ 

### Example 1:

Write each expression as a power with a single exponent.

a)  $(x^{1.5})(x^{3.5})$ 

| X | ], | 5 | ۲ | 3 | 5 | = X <sup>5</sup> |
|---|----|---|---|---|---|------------------|
|---|----|---|---|---|---|------------------|



Simplify and evaluate where possible.

a) 
$$(27x^6)^{\frac{1}{3}} = 27x^{(6\times\frac{2}{3})} = 27x^{\frac{12}{3}} = 27x^4$$
  
 $6x^2$   
 $7x^4$   
 $6x^2$   
 $7x^4$   
 $8x^2$   
 $7x^2$   
 $8x^2$   
 $7x^2$   
 $8x^2$   
 $7x^2$   
 $8x^2$   
 $7x^2$   
 $8x^2$   
 $8x^2$   
 $7x^2$   
 $7x^2$   
 $8x^2$   
 $7x^2$   
 $7x^2$   

b) 
$$\left[ \left( t^{\frac{1}{3}} \right) \left( t^{\frac{1}{3}} \right) \right]^9 = \left( t^{\frac{11}{3}} \right)^9 \left( t^{\frac{1}{3}} \right)^9 = \left( t^{\frac{36}{3}} \right) \left( t^{\frac{9}{3}} \right)$$
  
=  $\left( t^{\frac{12}{3}} \right) \left( t^{\frac{3}{3}} \right)$   
=  $t^{\frac{12+3}{3}} = t^{\frac{15}{3}}$ 

### Example 3:

Caylie invests \$5000 in a fund that increases in value at a rate of 12.6% per year. The bank provides a quarterly update on the value of the investment using the formula

 $A = 5000(1.126)^{\frac{4}{4}}$ , where q represents the number of quarterly periods and A represents the final amount of the investment.

- a) What is the relationship between the interest rate of 12.6% and the value 1.126 in the
  - formula? interest rate: amount owing PLUS an extra cost For borrowing money.

So, 12.6% = extra cost, amount awing = 100%  
b) What is the value of the investment after the 3rd quarter?  

$$2=3$$
:  $A = 5000(1.126)^{3/4}$   
 $A = 5000(1.0934)$   
 $A = $5461.78$   
 $C$  Round 3.6 Harey is a decimal  
 $C$  Round 3.6 Harey is a decimal  
 $C$  How many quarters are in 3 years?  
 $O$  How many quarters are in 3 years?  
 $O$  How many quarters in 1 year  
 $\rightarrow 4 \times 3 = 12$  quarters  
 $O$   $(1.126)^{12/4}$   
 $A = 5000(1.126)^{12/4}$   
 $A = 5000(1.126)^{12/4}$   
 $A = 5000(1.126)^{12/4}$ 

| Key Ideas                                                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| nt as a power with a positive exponent.<br>exponent laws for rational expressions       |  |  |  |  |  |
| s and <i>m</i> and <i>n</i> are the integral exponents.                                 |  |  |  |  |  |
| Product of Powers<br>$(a^m)(a^n) = a^{m+n}$ Power of a Product<br>$(ab)^m = (a^m)(b^m)$ |  |  |  |  |  |
| Power of a Quotient<br>$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$       |  |  |  |  |  |
| Zero Exponent<br>$a^0 = 1, a \neq 0$                                                    |  |  |  |  |  |
| Quotient of Negative Power<br>$\frac{1}{a^{-a}} = a^n, a \neq 0$                        |  |  |  |  |  |
|                                                                                         |  |  |  |  |  |

 $x^{3/5} = x^{0.6}$ 

14

Textbook Questions: Pg. 180-182 #1, 3-6, 8, 10, 12.

### **Review: The Real Number System**

Define each of the following terms below and fill in the graphic organizer to the right.

### **Natural Numbers:**

positive whole numbers excluding zero.

### Whole Numbers:

A positive number with no decimal or fractions (0,1,2,3,...)

Integers:

A whole number either negative or positive (..., -3, -2, -1, 0, 1, 2...)



Rational Numbers:

any number that can be expressed as a fraction or quotient  $\begin{pmatrix} 9 \\ b \end{pmatrix}$ , where a and b are integers and not equal to 0.

## Irrational Numbers:

A number that CANNOT be expressed as a Fraction. The decimal goes on Forever, and doesn't repeat. (NZ, T)

# **Real Numbers:**

- · Positive or negative, large or small, whole or decimal, are all real numbers
- Any rational or irrational number
- · Can't be "imaginary" ie. 00, F-1



# Determine which sets each number belongs to. In the graphic organizer, shade in the sets.

# **4.4 Irrational Numbers**

Outcome: 1) Demonstrate an understanding of powers with rational and integral exponents. 2) Demonstrate an understanding of irrational numbers by:

- Representing, identifying, and simplifying irrational numbers
- Ordering irrational numbers

### Example 1:

Identify the numbers as rational or irrational. You may use a calculator. Explain how you know.



### Example 3:

Use a number line to order these numbers from least to greatest.



#### Example 4:

Assume the Seabee Mine doubles its daily gold production to  $360 \text{ cm}^3$ . What is the length of a cube of gold produced in a five-day period? (note the formula for volume, V, of a cube is V = s<sup>3</sup>).

$$\begin{array}{c} \textcircledleft{0} & 5 & day & period \\ \hline 360 \text{ cm}^3 \times 5 &= 1800 \text{ cm}^3 \\ \hline 3 & 1800 \text{ cm}^3 &= 5 \\ \hline 2 & V &= 5^3 \\ \hline 3 & 1800 \text{ cm}^3 &= 35^3 \\ \hline 3 & 12.1644 \text{ cm} &= 5 \\ \hline 3 & 1800 \text{ cm}^3 &= 35^3 \\ \hline \end{array}$$



# 4.5 Mixed and Entire Radicals

Outcome: 1) Demonstrate an understanding of powers with rational and integral exponents.

2) Demonstrate an understanding of irrational numbers by:

index

- Representing, identifying, and simplifying irrational numbers
- Ordering irrational numbers

### **Definitions:**

>ntand root symbol VX radicand Radical: consists of a root symbol, an index, and a radicand

Radicand: the quantity under the radical sign Index: indicates what root to take

A power can be expressed as a radical in the form:

$$x_{n}^{\underline{m}} = \left(x_{n}^{\underline{1}}\right)^{\underline{m}} = \left(\sqrt[n]{x}\right)^{\underline{m}}$$
  
OR  

$$x_{n}^{\underline{m}} = \left(x^{\underline{m}}\right)^{\frac{1}{n}} = \sqrt[n]{x^{\underline{m}}}$$
  
ie.  $3^{\underline{3}} = \sqrt[3]{3^{\underline{1}}} = \sqrt[3]{3}$ 

### Example 1:

Express each power as an equivalent radical.-

a) 
$$10^{\frac{1}{4}} = \frac{4}{10'} = \frac{4}{10}$$
  
b)  $1024^{\frac{1}{3}} = \frac{3}{(1024)'} = \frac{3}{1024}$   
c)  $(x^4)^{\frac{3}{8}} = \frac{8}{(x^4)^3} = \frac{8}{5} + \frac{4x^3}{x^4} = \frac{8}{x^{12}}$ 

#### Example 2:

Express each radical as a power with a rational exponent.

a) 
$$\sqrt{125} = 125^{\frac{1}{2}}$$

b) 
$$\sqrt[3]{127^2} = 27^{\frac{2}{m}}$$

#### **Definitions:**

<u>Mixed radical</u>: the product of a rational number and a radical. Example:  $2\sqrt{5}$  and  $\frac{1}{4}\sqrt[3]{7}$ 

Entire radical: the product of 1 and a radical. Example:  $\sqrt{45}$  and  $\sqrt[3]{121}$ 

### Example 3:

Identify whether the radical is a mixed radical or a entire radical.

| a) $\sqrt{42}$ | b) 4√5 | c) 3√3 |
|----------------|--------|--------|
| entire         | mixed  | mixed  |

### Example 4:

Express each mixed radical as an equivalent entire radical. a)  $9\sqrt[3]{4} = \sqrt[3]{(9 \times 9 \times 9) \times 4} = \sqrt[3]{729.4} = \sqrt[3]{2916}$ 

b) 
$$4.2\sqrt{18} = \sqrt{(4.2 \times 4.2) \times 18} = \sqrt{317.52}$$

c) 
$$\frac{1}{2}\sqrt{10} = \sqrt{(\frac{1}{2}\times\frac{1}{2})\times10} = \sqrt{(\frac{1}{4})\times10} = \sqrt{2.5}$$

### Example 5:

4

Express each entire radical as an equivalent mixed radical.

a) 
$$\sqrt{40} = \sqrt{4.10} = \sqrt{4.10} = \sqrt{4.10} = 2\sqrt{10}$$

b) 
$$\sqrt{108} = \sqrt{4.27} = \sqrt{4} \cdot \sqrt{27} = 2 - \sqrt{27} = 2 - \sqrt{9.3}$$
  
=  $2\sqrt{9} \cdot \sqrt{3}$   
=  $2\sqrt{9} \cdot \sqrt{3}$   
=  $2 \cdot 3 \cdot \sqrt{3}$   
=  $2 \cdot 3 \cdot \sqrt{3}$   
=  $6\sqrt{3}$   
=  $2\sqrt{3}$   
=  $2\sqrt{3}$ 

# **Key Ideas**

• Radicals can be expressed as powers with fractional exponents.  $\sqrt[n]{x^m} = x^{\frac{m}{n}}$ 

The index of the radical has the same value as the denominator of the fractional exponent.

$$\sqrt[3]{10} = 10^{\frac{1}{3}}$$
  $\sqrt[3]{7^5} = 7^{\frac{3}{5}}$ 

• Radicals can be entire radicals such as  $\sqrt{72}$  and  $\sqrt[3]{96}$ . They can also be mixed radicals such as  $6\sqrt{2}$  and  $2\sqrt[3]{3}$ . You can convert between entire radicals and mixed radicals.

Textbook Questions: Pg. 192 #1-10

и и

¥

٠