

Chapter 4: Exponents and Radicals

4.1 Square Roots and Cube Roots

Review

1. Evaluate the following.
a. $\sqrt{81}=\sqrt{92}=9$
b. $\sqrt{36}=\sqrt{6^{2}}=6$

Outcome: Demonstrate an understanding of factors of whole numbers by determining the:

- Prime factors
- Greatest common factor
- Least common multiple
- Square root
- Cube root

Definitions:

Perfect Square: A number that can be expressed as the product of two equal factors Example:

- $16=(4)(4)$ or 4^{2}
- $25=(5)(5)$ or 5^{2}
- $36=(6)(6)$ or 6^{2}

Square Root: one of two equal factors of a number Example:

- $\sqrt{49}=\sqrt{(7)(7)}=7$

Perfect Cube: A number that is the product of three equal factors Example:

- $64=(4)(4)(4)=4^{3}$
- $27=(3)(3)(3)=3^{3}$

Cube Root: one of three equal factors of a number
Example:

- $\sqrt[3]{512}=\sqrt[3]{(8)(8)(8)}=8$

- $\sqrt[3]{125}=\sqrt[3]{(5)(5)(5)}=5$

Prime Factorization: the process of writing a number written as a product of its prime factors.

Example: The prime factorization of 24 is $2 \times 2 \times 2 \times 3$.

$$
24 \div 2=12 \div 2=6 \div 2=3
$$

Tree Method:

The number \qquad 16 is a perfect square. It is formed by multiplying the same number,
\qquad , twice together.

$$
(4)(4)=4^{2}=16
$$

The square root of 16 is 4 .

$$
\sqrt{16}=\sqrt{(4)(4)}=\sqrt{4^{2}}=4
$$

This is the same for perfect cubes and cube roots, however, the only difference is you the perfect cube is formed by multiplying the same number three times together.

Example 1: Identifying Perfect Squares and Perfect Cubes
State whether each of the following numbers is a perfect square or a perfect cube, both, or neither.
a) 144

Method 2: Factor out perfect
 squares/cubes

b) 512

Method 1: Tree Method

Method 2: Factor out perfect

Example 2:
Evaluate the following.
a) $\sqrt{64}$

$$
\begin{aligned}
\sqrt{64} & =\sqrt{4 \cdot 16} \\
& =\sqrt{4} \cdot \sqrt{16} \\
& =2 \cdot 4=8
\end{aligned}
$$

b) $\sqrt{144 x^{2}}$

$$
\begin{aligned}
\sqrt{14 x^{2}} & =\sqrt{144} \cdot \sqrt{x^{2}} \\
& =\sqrt{144} \cdot x \\
& =\sqrt{4 \cdot 36} \cdot x \\
& =\sqrt{4} \cdot \sqrt{36} \cdot x \\
& =2 \cdot 6 \cdot x=12 x
\end{aligned}
$$

$$
\sqrt[3]{125}=5
$$

d) $\sqrt[3]{27 a^{3}}$
$\sqrt[3]{27 a^{3}}$
$=\sqrt[3]{27} \cdot \sqrt[3]{a^{3}}$
$=3 \cdot a$
$=3 a$
Example 3:
A floor mat for gymnastics is a square with an area of $196 \mathrm{~m}^{2}$. What is its side length?
(1) What is the formula to find area of a square?

- Rectangle: $A=l \omega$

$$
\begin{aligned}
& \sqrt{196 m^{2}}=\sqrt{s^{2}} \\
& \sqrt{196 m^{2}}=5 \\
& \sqrt{4 \cdot 49 \cdot m^{2}}=5 \\
& \sqrt{4} \cdot \sqrt{49} \cdot \sqrt{m^{2}}=5 \\
& 2 \cdot 7 \cdot m=5 \\
& 14 m=5
\end{aligned}
$$

$$
2 \cdot 7 \cdot m^{7}=14 m=5
$$

Example 4:
The volume of a cubic box is $27000 \mathrm{in}^{3}$. Use two methods to determine it's dimensions.
(1) What is the formula for volume of a cube?

$$
V=s^{3}
$$

(2)

$$
\begin{aligned}
& \sqrt[3]{27000 \mathrm{in}^{3}}=\sqrt[3]{\mathrm{s}^{3}} \\
& \sqrt[3]{27000 \mathrm{in}^{3}}=s \\
& \sqrt[3]{27 \cdot 1000 \cdot \mathrm{in}^{3}}=s
\end{aligned}
$$

$$
=\sqrt[3]{27} \cdot \sqrt[3]{1000} \cdot \sqrt[3]{\operatorname{in}^{3}}
$$

$$
=3 \cdot \sqrt[3]{1000} \cdot \ln
$$

$$
=3 \cdot \sqrt[3]{8 \cdot 125} \cdot \mathrm{in}
$$

$$
=3 \cdot \sqrt[3]{8} \cdot \sqrt[3]{125} \cdot \mathrm{in}
$$

$$
=3 \cdot 2 \cdot 5 \cdot \mathrm{in}
$$

$$
=30 \mathrm{in}
$$

Key Ideas

- A perfect square is the product of two equal factors. One of these factors is called the square root.
- 25 is a perfect square: $\sqrt{25}=5$ because $5^{2}=25$
- A perfect cube is the product of three equal factors. One of these factors is called the cube root.
- -216 is a perfect cube: $\sqrt[3]{-216}=-6$ because $(-6)^{3}=-125$
- Some numbers will be BOTH a perfect square AND a perfect cube.
- 15625 is a perfect square : $125^{2}=15625$
- 15625 is a perfect cube: $25^{3}=15625$
- You can use diagrams or manipulatives, factor trees, or a calculator to solve problems involving square roots and cube roots.

Textbook Questions: Pg.158-159 \#1-4, 6, 9, 10

Can you evaluate the following?
a) $\sqrt{-16}$
b) $\sqrt[3]{-27}$

4.2 Integral Exponents

Review:

1. Identify the base and the exponent, then evaluate the power. $\quad 3^{2}=(3)(3)=9$
2. Simplify and evaluate the following. (hint: you'll need to use exponent laws)
a. $4^{2} \times 4^{5}=$

b. $\left(5^{2}\right)\left(5^{3}\right)=(5)^{2+3}=5^{5}$
c. $\left(3^{2}\right)^{7}=3^{2 \times 7}=3^{14}$
d. $\frac{6^{8}}{6^{5}}=6^{8-5}=6^{3}$

Outcome: Demonstrate an understanding of powers with integral exponents.

What is an integral exponent?

Integer number: is a whole number that can be either positive, negative, or zero.
Example:

Combine the two...
Integral Exponent: the exponent of a number is either a positive or negative whole number.

Examples: $\left(5^{-2}\right), 2^{-3}$

!*!*!*REMEMBER THE EXPONENT LAWS*!*!*!

Example 1:

Write each product or quotient as a power with a single exponent.
a) $\left(7^{6}\right)\left(7^{-2}\right)$

Use the exponent laws for multiplying or dividing powers with the same base.
Method 1: Add the exponents

$$
\begin{aligned}
& \text { od 1: Add the exponents } \\
& \left.7^{6+(-2)}=7^{6-2}=7^{4}\right]
\end{aligned}
$$

Method 2: Use Positive Exponents

$$
7^{6} \cdot\left(\frac{1}{7^{2}}\right)=\frac{7^{6}}{7^{2}}=7^{6-2}=7^{4}
$$

b) $\frac{7^{-5}}{7^{3}}$

Method 1: Subtract the Exponents

$$
7^{-5-3}=7^{-8}
$$

c) $\frac{(3 y)^{3}}{(3 y)^{-2}}$

Method 1: Subtract the Exponents

$$
=(3 y)^{3+2}
$$

$$
=(3 y)^{5}
$$

d) $\frac{(-3.5)^{4}}{(-3.5)^{-3}}$

Method 1: Subtract the Exponents

$$
\begin{aligned}
& (-3.5)^{4-(-3)} \\
= & (-3.5)^{4+3}=(-3.5)^{7}
\end{aligned}
$$

Method 2: Use Positive Exponents

$$
\begin{aligned}
\left(\frac{1}{7^{5}}\right)\left(\frac{1}{7^{3}}\right) & =\frac{1}{\left(7^{5}\right)\left(7^{3}\right)} \\
& =\frac{1}{7^{5+3}}=\frac{1}{7^{8}}
\end{aligned}
$$

Method 2: Use Positive Exponents

$$
\begin{array}{r}
\frac{(3 y)^{3}}{\left(\frac{1}{(3 y)^{2}}\right)}=(3 y)^{3}(3 y)^{2}=(3 y)^{3+e} \\
=(3 y)^{5}
\end{array}
$$

Method 2: Use Positive Exponents

$$
\begin{aligned}
& \begin{array}{r}
\frac{(-3.5)^{4}}{\left(\frac{1}{(-3.5)^{3}}\right)}=(-3.5)^{4}(-3.5)^{3} \\
= \\
=(-3.5)^{4+3} \\
=(-3.5)^{7}
\end{array}
\end{aligned}
$$

Example 2:
Simplify and evaluate where possible.
a) $\left[\left(0.6^{3}\right)\left(0.6^{-3}\right)\right]^{-5}$

b) $\left(\frac{x^{6}}{x^{-4}}\right)^{2}$

$$
\frac{\left(x^{6}\right)^{2}}{\left(x^{-4}\right)^{2}}=\frac{x^{12}}{x^{-8}}=x^{12-(-8)}=x^{12+8}
$$

Example 3:

Manitoba Agriculture, Food and Rural Initiatives staff conducted a grasshopper count. In one 25 km^{2} area, there were 401000000 grasshoppers. Use the following table to assess the degree of grasshopper infestation in this area.

- A power with a negative exponent can be written as a power with a positive exponent.
- Example:

$$
2^{-5}=\frac{1}{2^{5}} \quad\left(\frac{3}{4}\right)^{-2}=\frac{1}{\left(\frac{3}{4}\right)^{2}}=\left(\frac{4}{3}\right)^{2}
$$

- You can use the exponent laws to simplify.

Exponent Laws	
Note that a and b are rational or variable bases and m and n are the integral	
exponents.	

Textbook Questions: Pg.169-170 \#1, 2, 3-6, 8, 10.
4.3 Rational Exponents

Review: Evaluate the following:
a) $4^{3}=(4)(4)(4)=64$
b) $4^{-3}=\frac{1}{\left((1)^{3}\right.}=\frac{1}{(4)(4)(4)}=\frac{1}{64}$

Outcome: Demonstrate an understanding of powers with rational exponents.

Definition
Rational Exponents: the power of a number is in the form of a fraction.
Example: $4^{\frac{1}{3}}, x^{\frac{4}{3}}$

Example 1:
Write each expression as a power with a single exponent.
a) $\left(x^{1.5}\right)\left(x^{3.5}\right)$

$$
x^{1.5+35}=x^{5}
$$

Note: $4^{\frac{1}{2}}=4^{0.5}$
b) $\frac{4^{\frac{1}{2}}}{4^{15}}$

$$
4^{0.5-0.5}=4^{0}
$$

c) $\frac{1.5^{\frac{3}{3}}}{1.5^{\frac{1}{6}}}=1.5^{\left(\frac{4}{3}\right.}$

Example 2:

$$
\left.{ }^{\left(\frac{4}{3}-\frac{1}{6}\right)}=1.5^{\left(\frac{8}{-}-\frac{1}{6}\right)}\right)^{1.5^{\frac{7}{6}}}
$$

Simplify and evaluate where possible.

$$
\begin{gathered}
\text { a) }\left(27 x^{9}\right)^{\frac{1}{4}}=27 x^{\left(6 \times \frac{2}{3}\right)}=27 x^{\frac{12}{3}}=27 x^{4} \\
\frac{6}{1} \times \frac{2}{3}
\end{gathered}
$$

b)

$$
\begin{aligned}
{\left[\left(t^{\frac{1}{3}}\right)\left(t^{\frac{1}{3}}\right)\right]^{9}=\left(t^{\frac{4}{3}}\right)^{9}\left(t^{\frac{1}{3}}\right)^{9} } & =\left(t^{\frac{33}{3}}\right)\left(t^{\frac{9}{3}}\right) \\
& =\left(t^{12}\right)\left(t^{3}\right) \\
& =t^{12+3}=t^{15}
\end{aligned}
$$

Example 3:
Caylie invests $\$ 5000$ in a fund that increases in value at a rate of 12.6% per year. The bank provides a quarterly update on the value of the investment using the formula $A=5000(1.126)^{\frac{4}{4}}$, where q represents the number of quarterly periods and A represents the final amount of the investment.
a) What is the relationship between the interest rate of 12.6% and the value 1.126 in the formula? interest rate: amount owing PLUS an extra cost for borrowing money.
So, $12.6 \%=$ extra cost, amount owing $=100 \%$
b) What is the value of the investment after the Ord quarter?

$$
\begin{aligned}
100 \% & +12.6 \% \\
& =112.6 \% \\
= & 1.126
\end{aligned}
$$

$$
\begin{aligned}
q=3: A & =5000(1.126)^{3 / 4} \\
A & =5000(1.0924) \\
A & =\$ 5461.78
\end{aligned}
$$

$$
\frac{.78}{\pi} \text { Round! Money is } 2 \text { decimal } \text { places. }
$$

c) What is the value of the investment after 3 years?
(1) How many quarters are in 3 years?
$\rightarrow 4$ quarters in 1 year
$\rightarrow 4 \times 3=12$ quarters
(2) A

$$
\begin{aligned}
& I=12 \\
& A=5000(1.126)^{12 / 4} \\
& A=5000(1.126)^{3} \\
& A=5000(1.42763)=7138.14
\end{aligned}
$$

Key Ideas

- You can write a power with a negative exponent as a power with a positive exponent.
- $(-9)^{-1.3}=\frac{1}{(-9)^{1.3}}$
- You can apply the above principle to the exponent laws for rational expressions

Exponent Laws	
Note that a and b are rational or variable bases and m and n are the integral exponents.	
Product of Powers $\left(a^{m}\right)\left(a^{n}\right)=a^{m+n}$	Power of a Product $(a b)^{m}=\left(a^{n \prime}\right)\left(b^{\prime \prime \prime}\right)$
Quotient of Powers $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0$	Power of a Quotient $\left(\frac{a}{b}\right)^{n}=\frac{a^{\prime \prime}}{b^{\prime \prime}}, b \neq 0$
Power of a Power $\left(a^{m}\right)^{n}=a^{m m}$	Zero Exponent $a^{0}=1, a \neq 0$
Power of a Negative Exponent $a^{-n}=\frac{1}{a^{n}}, a \neq 0$	Quotient of Negative Power $\frac{1}{a^{n}}=a^{n}, a \neq 0$

- A power with a rational exponent can be written with the exponent in decimal or fractional form.

$$
\circ x^{3 / 5}=x^{0.6}
$$

Textbook Questions: Pg. 180-182 \#1, 3-6, 8, 10, 12.

Natural Numbers:
positive whole numbers excluding zero.

Whole Numbers:
A positive number with no decimal or fractions $(0,1,2,3, \ldots)$
Integers:
A whole number either negative or positive

$$
(\ldots,-3,-2,-1,0,1,2 \ldots)
$$

Rational Numbers:
any number that can be expressed as a
fraction or quotient $\left(\frac{a}{b}\right)$, where a and b are integers and not equal to 0 .
Irrational Numbers:
A number that CANNOT be expressed as a fraction. The decimal goes on forever, and doesn't repeat. $(\sqrt{2}, \pi)$
Real Numbers:

- Positive or negative, large er small, Whole or decimal, are all real numbers
- Any rational or irrational number
- Can it be "imaginary" ie. $\infty, \sqrt{-1}$

Determine which sets each number belongs to. In the graphic organizer, shade in the sets.
a) -4
b) 0
c) $1.273958 .$.
d) 7

e) $7 . \overline{4}$
f) 4.93
g) $-\frac{2}{3}$
h) 1π

4.4 Irrational Numbers

Outcome: 1) Demonstrate an understanding of powers with rational and integral exponents.
2) Demonstrate an understanding of irrational numbers by:

- Representing, identifying, and simplifying irrational numbers
- Ordering irrational numbers

Example 1:
Identify the numbers as rational or irrational. You may use a calculator. Explain how you know.

$$
\sqrt[3]{\frac{8}{64}}
$$

$-\frac{5}{6}=-0.83 \overline{3}$

$$
\begin{gathered}
\sqrt{11} \\
\text { irrational } \\
\sqrt{11}=3.3166 \ldots
\end{gathered}
$$

$$
\begin{aligned}
& \text { rational } \\
& \text { and }
\end{aligned}
$$

$$
\sqrt[3]{\frac{8}{64}}=\sqrt[3]{\frac{1}{8}}=\frac{1}{2}
$$

Example 2:
Classify the following numbers as rational, irrational, or neither. You may use a calculator.

${ }^{\frac{2}{3}}$
${ }_{6}^{6}$

$$
\sqrt{-2}
$$

neither

$$
\sqrt{81}
$$

$$
\sqrt{\frac{\sqrt{3}}{3}}
$$

irrational
$-\sqrt{2}$ $-\sqrt{2}$
irrational

$$
\sqrt[3]{213}
$$ irrational

(27) ${ }^{\frac{1}{3}}$

Example 3:

Use a number line to order these numbers from least to greatest.
$3.87 \quad \sqrt{15}$
$3^{\lrcorner}{ }_{-1.91}^{1} L_{2.35}$

Example 4:

Assume the Seabee Mine doubles its daily gold production to $360 \mathrm{~cm}^{3}$. What is the length of a cube of gold produced in a five-day period? (note the formula for volume, V , of a cube is $\mathrm{V}=\mathrm{s}^{3}$).
(1) 5 day period
$360 \mathrm{~cm}^{3} \times 5=1800 \mathrm{~cm}^{3}$

Key Ideas

- Rational Numbers and irrational numbers form the set of real numbers.

- You can order radicals that are irrational numbers using a calculator to produce approximate values.
4.5 Mixed and Entire Radicals

Outcome: 1) Demonstrate an understanding of powers with rational and integral exponents.
2) Demonstrate an understanding of irrational numbers by:

- Representing, identifying, and simplifying irrational numbers
- Ordering irrational numbers

Definitions:
Radical: consists of a root symbol, an index, and a radicand

Radicand: the quantity under the radical sign
Index: indicates what root to take
A power can be expressed as a radical in the form:

$$
\begin{gathered}
x^{\frac{m}{n}}=\left(x^{\frac{1}{n}}\right)^{m}=(\sqrt[n]{x})^{m} \\
\text { OR } \\
x^{n}=\left(x^{\prime \prime \prime}\right)^{\frac{1}{n}}=\sqrt[n]{x^{m}}
\end{gathered}
$$

Example 1:
Express each power as an equivalent radical:
a) $10^{\frac{1}{4}}=\sqrt[4]{10^{1}}=\sqrt[4]{10}$
b) $1024^{\frac{1}{3}}=\sqrt[3]{(1024)^{1}}=\sqrt[3]{1024}$
c) $\left(x^{4}\right)^{\frac{3}{8}}$

Express each radical as a power with a rational exponent.
a) $\sqrt[2]{125}$

$$
=125^{\frac{1}{2}}
$$

b) $\sqrt{y^{5}}=y^{\frac{5}{3}}$
c) $\sqrt[4]{27^{2}}=27^{\frac{2}{17}}$

Definitions:
Mixed radical: the product of a rational number and a radical.
Example: $2 \sqrt{5}$ and $\frac{1}{4} \sqrt[3]{7}$
Entire radical: the product of 1 and a radical.
Example: $\sqrt{45}$ and $\sqrt[3]{121}$

Example 3:
Identify whether the radical is a mixed radical or a entire radical.
a) $\sqrt{42}$
b) $4 \sqrt[3]{5}$
c) $3 \sqrt{3}$
entire

Example 4:
Express each mixed radical as an equivalent entire radical.
a) $9 \sqrt[3]{4}=\sqrt[3]{(9 \times 9 \times 9) \times 4}=\sqrt[3]{729 \cdot 4}=\sqrt[3]{2916}$
b) $4.2 \sqrt{18}=\sqrt{(4.2 \times 4.2) \times 18}=\sqrt{317.52}$
c) $\frac{1}{2} \sqrt{10}=\sqrt{\left(\frac{1}{2} \times \frac{1}{2}\right) \times 10}=\sqrt{\left(\frac{1}{4}\right) \times 10}=\sqrt{2.5}$

Example 5:
Express each entire radical as an equivalent mixed radical.
a) $\sqrt{40}=\sqrt{4 \cdot 10}=\sqrt{4} \cdot \sqrt{10}=2 \sqrt{10}$
b) $\sqrt{108}=\sqrt{4 \cdot 27}=\sqrt{4} \cdot \sqrt{27}=2 \sqrt{27}=2 \sqrt{9 \cdot 3}$

$$
=2 \sqrt{9} \cdot \sqrt{3}
$$

$$
=2 \cdot 3 \cdot \sqrt{3}
$$

c) $\sqrt[3]{32}=\sqrt[3]{32}=\sqrt[3]{8 \cdot 4}=\sqrt[3]{8} \sqrt[3]{4}$

$$
=2 \sqrt[3]{4}
$$

Key Ideas

- Radicals can be expressed as powers with fractional exponents.

$$
\sqrt[n]{x^{m t}}=x^{\prime \prime \prime}
$$

The index of the radical has the same value as the denominator of the fractional exponent.

$$
\sqrt[3]{10}=10^{\frac{1}{3}} \quad \sqrt[3]{7^{5}}=7^{\frac{3}{5}}
$$

- Radicals can be entire radicals such as $\sqrt{72}$ and $\sqrt[3]{96}$. They can also be mixed radicals such as $6 \sqrt{2}$ and $2 \sqrt[5]{3}$. You can convert between entire radicals and mixed radicals.

Textbook Questions: Pg. 192 \#1-10

