Chapter 4: Exponents and Radicals 4.1 Square Roots and Cube Roots

<u>Review</u>

1. Evaluate the following.

a. √81

b. √<u>36</u>

Outcome: Demonstrate an understanding of factors of whole numbers by determining the:

- Prime factors
- Greatest common factor
- Least common multiple
- Square root
- Cube root

Definitions:

Perfect Square: A number that can be expressed as the product of two equal factors

Example:

- 16 = (4)(4) or 4²
- 25 = (5)(5) or 5²
- 36 = (6)(6) or 6²

Square Root: one of two equal factors of a number

Example:

• $\sqrt{49} = \sqrt{(7)(7)} = 7$

Perfect Cube: A number that is the product of three equal factors

Example:

- $64 = (4)(4)(4) = 4^3$
- $27 = (3)(3)(3) = 3^3$

Cube Root: one of three equal factors of a number

Example:

- $\sqrt[3]{512} = \sqrt[3]{(8)(8)(8)} = 8$
- $\sqrt[3]{125} = \sqrt[3]{(5)(5)(5)} = 5$

<u>Prime Factorization</u>: the process of writing a number written as a product of its prime factors. Example: The prime factorization of 24 is $2 \times 2 \times 2 \times 3$. Tree Method:

 $24 \div 2 = 12 \div 2 = 6 \div 2 = 3$

Relationship between Square Roots and Perfect Squares (Cube roots and Perfect Cubes)

The number _____ is a perfect square. It is formed by multiplying the same number, _____, twice together.

The square root of _____ is _____.

This is the same for perfect cubes and cube roots, however, the only difference is you the perfect cube is formed by multiplying the same number three times together.

Example 1: Identifying Perfect Squares and Perfect Cubes

State whether each of the following numbers is a perfect square or a perfect cube, both, or neither.

a) 144 Method 1: Tree Method

Method 2: Factor out perfect squares/cubes

b) 512 Method 1: Tree Method

Method 2: Factor out perfect square/cubes

c) 356 Method 3: Calculator

Example 2:

Evaluate the following. a) $\sqrt{64}$ b) $\sqrt{144x^2}$

c) ∛125

d) $\sqrt[3]{27a^3}$

Example 3:

A floor mat for gymnastics is a square with an area of 196m². What is its side length?

Example 4:

The volume of a cubic box is 27 000 in³. Use two methods to determine it's dimensions.

Key Ideas

- A perfect square is the product of two equal factors. One of these factors is called the square root.
 - 25 is a perfect square: $\sqrt{25}$ = 5 because 5² = 25
- A perfect cube is the product of three equal factors. One of these factors is called the cube root.
 - -216 is a perfect cube: $\sqrt[3]{-216} = -6$ because (- 6)³ = -125
- Some numbers will be BOTH a perfect square AND a perfect cube.
 - 15 625 is a perfect square : $125^2 = 15 625$
 - 15 625 is a perfect cube: $25^3 = 15 625$
- You can use diagrams or manipulatives, factor trees, or a calculator to solve problems involving square roots and cube roots.

Textbook Questions: Pg.158-159 #1-4, 6, 9, 10

4.2 Integral Exponents

3²

Review:

- 1. Identify the base and the exponent, then evaluate the power.
- Simplify and evaluate the following. (*hint: you'll need to use exponent laws*)
 a. 4² x 4⁵ =

b.
$$(5^2)(5^3) =$$

c.
$$(3^2)^7 =$$

d.
$$\frac{6^8}{6^5} =$$

Outcome: Demonstrate an understanding of powers with integral exponents.

What is an integral exponent?

Integer number: is a whole number that can be either positive, negative, or zero. Example:

Exponent: determines how many times to multiply a number. Usually to the right and above the base.

Example:

Combine the two... Integral Exponent: the exponent of a number is either a positive or negative whole number.

Examples: (5⁻²), 2⁻³

!*!*!*REMEMBER THE EXPONENT LAWS*!*!*!

Exponent Law	Example
Note that <i>a</i> and <i>b</i> are rational or variable bases and <i>m</i> and <i>n</i> are the integral exponents.	
Product of Powers $(a^m)(a^n) = a^{m+n}$	$(3^{-2})(3^4) = 3^{-2+4} = 3^2$
Quotient of Powers $\frac{a^m}{a^n} = a^{m-n}$, $a \neq 0$	$\frac{x^3}{x^{-5}} = \left(x^{3-(-5)}\right) = x^8$
Power of a Power $(a^m)^n = a^{mn}$	$(0.75^4)^{-2} = 0.75^{(4)(-2)} = 0.75^{-8} \text{ or } \frac{1}{0.75^8}$
Power of a Product $(ab)^m = (a^m)(b^m)$	$(4z)^{-3} = \frac{1}{(4z)^3} \text{ or } \frac{1}{64z^3}$
Power of a Quotient $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$	$\left(\frac{t}{3}\right)^{-2} = \left(\frac{3}{t}\right)^2 = \frac{3^2}{t^2} = \frac{9}{t^2}$
Zero Exponent $a^0 = 1, a \neq 0$	$(4y^2)^0 = 1$ $-(4y^2)^0 = -1$
Power of a Negative Exponent $a^{-n} = \frac{1}{a^n}$, $a \neq 0$	$4^{-3} = \frac{1}{4^3}$
Quotient of Negative Power $\frac{1}{a^{-n}} = a^n, \ a \neq 0$	$\frac{1}{3^{-2}} = 3^2$

Example 1:

Write each product or quotient as a power with a single exponent.

a) (7⁶)(7⁻²)

Use the exponent laws for multiplying or dividing powers with the same base. **Method 1: Add the exponents**

Method 2: Use Positive Exponents

b)
$$\frac{7^{-5}}{7^3}$$

Method 2: Use Positive Exponents

c)
$$\frac{(3y)^3}{(3y)^{-2}}$$

Method 1: Subtract the Exponents

Method 2: Use Positive Exponents

d)
$$\frac{(-3.5)^4}{(-3.5)^{-3}}$$

Method 1: Subtract the Exponents

Method 2: Use Positive Exponents

Example 2: Simplify and evaluate where possible. a) $[(0.6^3)(0.6^{-3})]^{-5}$

b)
$$(\frac{x^6}{x^{-4}})^2$$

Example 3:

Manitoba Agriculture, Food and Rural Initiatives staff conducted a grasshopper count. In one 25 km^2 area, there were 401 000 000 grasshoppers. Use the following table to assess the degree of grasshopper infestation in this area.

Grasshopper Density	
0 - 4 per square metre = very light	
5 - 8 per square metre = light	
9 - 12 per square metre = moderate	
13 - 24 per square metre = severe	
25 per square metre = very severe	

Key Ideas			
 A power with a negative exponent can be written as a power with a positive exponent. Example: 			
$2^{-5} = \frac{1}{2^5} \qquad \left(\frac{3}{4}\right)^{-2} = \frac{1}{\left(\frac{3}{4}\right)^2} = \left(\frac{4}{3}\right)^2$			
• You can use the exponent laws to simplify.			
Exponent Laws			
Note that <i>a</i> and <i>b</i> are rational or variable bases and <i>m</i> and <i>n</i> are the integral exponents.			
Product of Powers $(a^m)(a^n) = a^{m+n}$	Power of a Product $(ab)^m = (a^m)(b^m)$		
Quotient of Powers $\frac{a^m}{a^n} = a^{m-n} , a \neq 0$	Power of a Quotient $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$		
Power of a Power $(a^m)^n = a^{mn}$	Zero Exponent $a^0 = 1, a \neq 0$		
Power of a Negative Exponent $a^{-n} = \frac{1}{a^n}$, $a \neq 0$	Quotient of Negative Power $\frac{1}{a^{-n}} = a^n, \ a \neq 0$		

Textbook Questions: Pg.169-170 #1, 2, 3-6, 8, 10.

4.3 Rational Exponents

Review: Evaluate the following:

Outcome: Demonstrate an understanding of powers with rational exponents.

Definition

<u>Rational Exponents:</u> the power of a number is in the form of a fraction.

Example: $4^{\frac{1}{3}}$, $x^{\frac{4}{3}}$

Example 1:

Write each expression as a power with a single exponent.

a)
$$(x^{1.5})(x^{3.5})$$

b)
$$\frac{4^{\frac{1}{2}}}{4^{0.5}}$$

c)
$$\frac{1.5^{\frac{4}{3}}}{1.5^{\frac{1}{6}}}$$

Example 2: Simplify and evaluate where possible.

a)
$$(27x^6)^{\frac{2}{3}}$$

b)
$$\left[\left(t^{\frac{4}{3}}\right)\left(t^{\frac{1}{3}}\right)\right]^{9}$$

Example 3:

Caylie invests \$5000 in a fund that increases in value at a rate of 12.6% per year. The bank provides a quarterly update on the value of the investment using the formula

 $A = 5000(1.126)^{\frac{q}{4}}$, where q represents the number of quarterly periods and A represents the final amount of the investment.

- a) What is the relationship between the interest rate of 12.6% and the value 1.126 in the formula?
- b) What is the value of the investment after the 3rd quarter?

c) What is the value of the investment after 3 years?

Key Ideas

 You can write a power with a negative exponent as a power with a positive exponent. (-9)^{-1.3} = 1/((-9)^{1.3}) You can apply the above principle to the exponent laws for rational expressions 		
Exponent Laws		
Note that <i>a</i> and <i>b</i> are rational or variable bases and <i>m</i> and <i>n</i> are the integral exponents.		
Product of Powers $(a^m)(a^n) = a^{m+n}$	Power of a Product $(ab)^m = (a^m)(b^m)$	
Quotient of Powers $\frac{a^m}{a^n} = a^{m-n}$, $a \neq 0$	Power of a Quotient $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}, \ b \neq 0$	
Power of a Power $(a^m)^n = a^{mn}$	Zero Exponent $a^0 = 1, a \neq 0$	
Power of a Negative Exponent $a^{-n} = \frac{1}{a^n}$, $a \neq 0$	Quotient of Negative Power $\frac{1}{a^{-n}} = a^n, \ a \neq 0$	
 A power with a rational exponent can be written with the exponent in decimal or fractional form. x^{3/5} = x^{0.6} 		

Textbook Questions: Pg. 180-182 #1, 3-6, 8, 10, 12.

Review: The Real Number System

Define each of the following terms below and fill in the graphic organizer to the right.

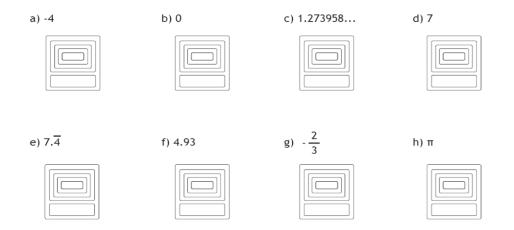
Natural Numbers:

Rational Numbers:

Irrational Numbers:

Real Numbers:

Determine which sets each number belongs to. In the graphic organizer, shade in the sets.



4.4 Irrational Numbers

Outcome: 1) Demonstrate an understanding of powers with rational and integral exponents.

- 2) Demonstrate an understanding of irrational numbers by:
 - Representing, identifying, and simplifying irrational numbers
 - Ordering irrational numbers

Example 1:

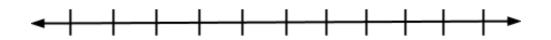
Identify the numbers as rational or irrational. You may use a calculator. Explain how you know.

$\frac{-5}{6}$	$\sqrt{11}$	$\sqrt[3]{\frac{8}{64}}$
----------------	-------------	--------------------------

Example 2:

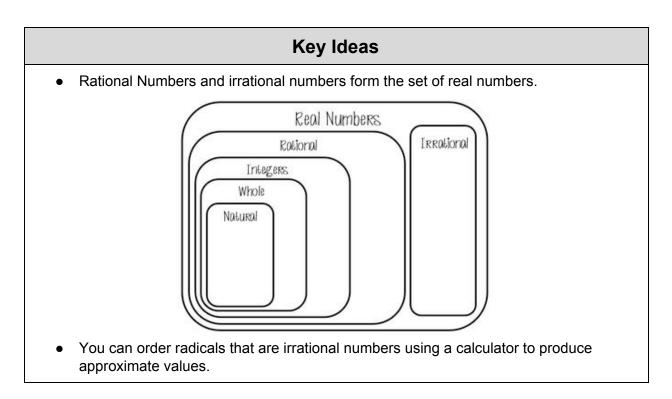
	•	irrational, or neither. You	-
$\sqrt{7}$	0	√125	$-\sqrt{2}$
		_	
$\frac{2}{3}$	$\sqrt{-2}$	$\sqrt{\frac{3}{5}}$	∛213
-		,	
6			1
$\frac{6}{0}$	$\sqrt{81}$	8	$(27)^{\overline{3}}$
Example 3:			

Use a number line to order these numbers from least to greatest. $\sqrt{15}, \ \sqrt{9}, \sqrt[3]{-7}, \ \sqrt[3]{13}, \ \sqrt[4]{21}$



Example 4:

Assume the Seabee Mine doubles its daily gold production to 360 cm^3 . What is the length of a cube of gold produced in a five-day period? (note the formula for volume, V, of a cube is V = s³).



4.5 Mixed and Entire Radicals

Outcome: 1) Demonstrate an understanding of powers with rational and integral exponents.

2) Demonstrate an understanding of irrational numbers by:

- Representing, identifying, and simplifying irrational numbers
- Ordering irrational numbers

Definitions:

Radical: consists of a root symbol, an index, and a radicand

 $\sqrt[n]{x}$

<u>Radicand</u>: the quantity under the radical sign <u>Index</u>: indicates what root to take

A power can be expressed as a radical in the form:

$$x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)^{m} = \left(\sqrt[n]{x}\right)^{m}$$
OR
$$x^{\frac{m}{n}} = \left(x^{m}\right)^{\frac{1}{n}} = \sqrt[n]{x^{m}}$$

Example 1:

Express each power as an equivalent radical.

a) $10^{\frac{1}{4}}$

- b) $1024^{\frac{1}{3}}$
- c) $(x^4)^{\frac{3}{8}}$

Example 2:

Express each radical as a power with a rational exponent.

a) $\sqrt{125}$

b) $\sqrt[3]{y^5}$

c)
$$\sqrt[n]{27^2}$$

Definitions:

<u>Mixed radical:</u> the product of a rational number and a radical. Example: $2\sqrt{5}$ and $\frac{1}{4}\sqrt[3]{7}$

<u>Entire radical:</u> the product of 1 and a radical. Example: $\sqrt{45}$ and $\sqrt[3]{121}$

Example 3:

Identify whether	the radical is a mixed radical or a entire radical.	
a) √42	b) 4∛5	c) 3√ <u>3</u>

Example 4:

Express each mixed radical as an equivalent entire radical.

a) 9∛4

b) $4.2\sqrt{18}$

c) $\frac{1}{2}\sqrt{10}$

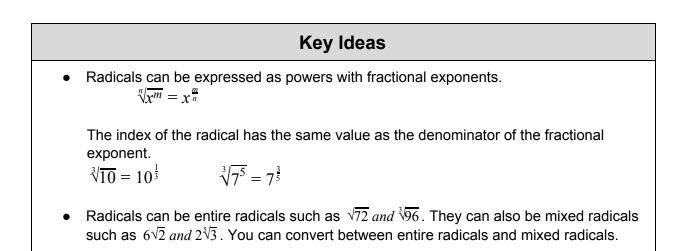
Example 5:

Express each entire radical as an equivalent mixed radical.

a) √40

b) √108

c) ∛<u>32</u>



Textbook Questions: Pg. 192 #1-10