Name: \qquad

Chapter 2: Surface Area and Volume

2.1 Surface Area of Prisms and Cylinders

Outcomes: Solve problems, using SI and imperial units, that involve the surface area of 3-D objects, including right prisms and cylinders.

Review:

1) Find the area of a triangle, where the base is 4 cm and the height is 10 cm
2) Find the area of a rectangle where the length is 12 m and the width is 7 m

Definitions:

Surface Area: the sum of the areas of each face of the object.
ALWAYS MEASURED IN SQUARE UNITS

Prisms: three-dimensional object which has two bases or ends that have the same size and shape and are parallel to each other.

Cylinder: Three-dimensional object with two parallel and congruent circular bases.

Example 1:

Identify what three-dimensional shape is and the surface area of the shape below.

Example 2:

Identify what three-dimensional shape is and the surface area of the shape below.

Example 3:

Identify what three-dimensional shape is and the surface area of the shape below.

Example 4:

Find the width if the $S A=500 \mathrm{~cm}^{2}$

15 cm

Textbook Questions: Pg. 74 \# 1ab, 3ab, 4, 6, 9, 11, 17

2.2 Surface Area of Pyramids and Cones

Outcomes: Solve problems, using SI and imperial units, that involve the surface area of 3-D objects, including right pyramids and cones.

Definitions:

Pyramid: A three-dimensional object with one base and the same number of triangular faces as there are sides on the base.

For example: Square-based Pyramid; Rectangular Pyramid; Triangular Pyramid
Cone: Three-dimensional object with a circular base and a curved lateral side that extends from the base to the vertex.

Slant Height: the shortest lateral distance from the edge of the base of a pyramid to its highest point.

Lateral Area: the surface that joins the two bases of a three-dimensional object or that joins the base to the highest point

Review:

Find the area of a circle with:
a) Diameter of 6 ft
b) Radius of 2 cm

Example 1:

Calculate the surface area of the tetrahedron pyramid.

Example 2:

A right rectangular pyramid has base dimensions 8 ft by 10 ft , and a height of 16 ft . Calculate the surface area of the pyramid to the nearest square foot.

Surface Area of a Cone:

Example 3:

A right cone has a base radius of 2 ft and a height of 7 ft . Calculate the surface area of the cone to the nearest foot.

Example 4:

The lateral area of a cone is $220 \mathrm{~cm}^{2}$. The diameter of the cone is 10 cm . Determine the height of the cone, to the nearest tenth of a cm.

Textbook Questions: Pg. 74. \#1cd, 2, 7, 12, 14, 16

2.3 Surface Area Spheres

Outcomes: Solve problems, using SI and imperial units, that involve the surface area of 3-D objects, including spheres

Definitions:

Sphere: a round, ball-shaped object
A set of points in space that are a given distance (radius) from a fixed point (centre)

Surface Area of a Sphere:

$$
S A=4 \pi r^{2}
$$

Example 1:

The diameter of a baseball is approximately 3 in . Determine the surface area of a baseball to the nearest square inch.

Example 2:

The surface area of a lacrosse ball is approximately 20 square inches. What is the diameter of the lacrosse ball to the nearest tenth of an inch.

Textbook Questions: Pg. 74 \#1e, 3c, 5, 13, 15

2.4 Volume of Prisms, Cylinders and Spheres

Outcomes: Solve problems, using SI and imperial units, that involve the volume of 3-D objects, including right prisms, right cylinders, and spheres.

To calculate the volume of prisms and cylinders, simply calculate the area of the base then multiply by the height.

Example 1:

1. Calculate the volume of each shape:
a)

b)

c)

To calculate the volume of a sphere, use the formula $V=\frac{4}{3} \pi r^{3}$
2. Calculate the volume of the sphere that has a radius of 4.5 inches.
3. A hemisphere has a radius of 8 cm .
a) What is the surface area of the hemisphere to the nearest tenth of a square cm ?

b) What is the volume of the hemisphere to the nearest tenth of a cubic cm ?

2.5 Volume of Pyramids and Cones

Outcomes: Solve problems, using SI and imperial units, that involve the volume of 3-D objects, including right pyramids and cones.

To calculate the volume of pyramids, use the following formula:

$$
V=\frac{1}{3} l w h
$$

To calculate the volume of cones, use the following formula:

$$
V=\frac{1}{3} \pi r^{2} h
$$

1. Calculate the volume of each shape:
a)

12"
b)

c)
2. A cone has a height of 4 yd and a volume of 205 cubic yards. Determine the radius of the base of the cone to the nearest whole number.

Textbook Questions: Pg. 86 \# 1(ab), 2(ab), $9-11,12,18$

